Printed Page:- 04			Subject Code:- AMICSE0306 Roll. No:	
NC	DIDA	(An Autonomous Institute Af	ech (Integrated)	<u> </u> \
		SEWI. III - THEORT EAAN Subject: Discre		
Tin	ne: 3 I	0	Max. Marks:	100
 IMP: <i>1.</i> The Quest Qu	Verif is Que tions (1 uximum ustrate sume s eferabl sheet	stion paper comprises of three Section <i>MCQ</i> 's) & Subjective type questions.	er.	etc.
	<u>ΓΙΟΝ</u> ·			20
1. Att	empt a	all parts:-		
1-a.	(a) (b) (c) (d)	is the multiplicative identity of n 0 -1 1 2	atural numbers. (CO1)	1
1-b.	If (a) (b) (c) (d)	F set A has 4 elements and B has 3 elements 12 14 27 7	nents then set n(A X B) is : (CO1)	1
1-c.		he set of odd and even positive integer CO2) a free semigroup of (M, \times) a subsemigroup of (M, \times)	rs closed under multiplication is	1
	(c)	a semigroup of (M, \times)		
	(d)	a subgroup of (M, \times)		
1-d.	L (a)	et '*' be a binary operation on N defir 9	hed by $a*b=a-b+ab2$, then find $4*5$. (CO2)	1

(b) 88

•

•

	(c)	98		
	(d)	99		
1-e.	_	are the is/are universal logic gates. (CO3)	1	
	(a)	OR and NOR		
	(b)	AND		
	(c)	NAND and NOR		
	(d)	NOT		
1-f.	Т	The number of literals in the expression $F=X.Y' + Z$ are (CO3)	1	
	(a)	3		
	(b)	2		
	(c)	4		
	(d)	1		
1-g.	L	et P: I am in Bangalore.; Q: I love cricket.; then $q \rightarrow p$ is : (CO4)	1	
	(a)	If I love cricket then I am in Bangalore		
	(b)	If I am in Bangalore then I love cricket		
	(c)	I am not in Bangalore		
	(d)	I love cricket		
1 - h.		he premises (p Aq) V r and $r \rightarrow s$ imply which of the conclusion :	1	
	((CO4)		
	(a)	p v q		
	(b)	p v s		
	(c)	p∧q		
		q v r		
1-i.	Ir	n a graph if E=(u,v) means (CO5)	1	
	(a)	u is adjacent to v but v is not adjacent to u		
	(b)	e begins at u and ends at v		
	(c)	u is processor and v is the successor		
	(d)	both b and c	1	
1-j.	is a discrete structure that represents hierarchical relationships between individual elements or nodes (CO5)			
		ndividual elements or nodes.(CO5)		
	(a) (b)	Tree		
	(b) (c)	Graph Root		
	(c) (d)	Vertices		
γ Δ ++				
	-	all parts:-	C	
2.a.		ist three operations possible on relations.(CO1)	2 2	
2.b.	Define rings and write it's properties. (CO2) Prove that complement of an element is unique (CO2)			
2.c.	P	rove that complement of an element is unique.(CO3)	2	

•

•

Page 2 of 4

2.d.	Define Proposition with an example. (CO4)	2			
2.e.	Describe multigraph with example. (CO5)	2			
SECTIO	<u>DN-B</u>	30			
3. Answer any five of the following:-					
3-а.	If A = $\{1, 5, 8, 9\}$ and B $\{2, 4\}$ and f= $\{(1, 2), (5, 4), (8, 2), (9, 4)\}$. Then prove f is a onto function.(CO1)	6			
3-b.	Let $A = \{1, 2, 3, 4\}$, give an example of a mapping which is (i) neither symmetric nor anti-symmetric, (ii) anti-symmetric and reflexive but not transitive, (iii) transitive and reflexive but not anti-symmetric.(CO1)	6			
3-с.	Let G,G' be groups. Suppose that we have a surjective group homomorphism f:G \rightarrow G'. Show that if G is an abelian group, then so is G'.(CO2)	6			
3-d.	Prove that the additive group $Q=(Q,+)$ of rational numbers is not finitely generated. (CO2)	б			
3.e.	Is there finite set such that it is a poset and totally ordered set but not a well- ordered set. Justify. (CO3)	6			
3.f.	Describe all Quantifiers and explain with examples. (CO4)	6			
3.g.	Explain complete graph and regular graph with an example. (CO5)	6			
SECTIO	<u>DN-C</u>	50			
4. Answe	er any <u>one</u> of the following:-				
4-a.	State differences between 'Difference of sets' and 'Symmetric difference of sets'. Also give their examples individually.(CO1)	10			
4-b.	Solve the recurrence relation $2ar-5ar-1+2ar-2 = 0$ then find the particular solution $ao = 0$ and $a1 = 1$. (CO1)	10			
5. Answe	er any <u>one</u> of the following:-				
5-a.	Let $Q=(Q,+)$ be the additive group of rational numbers. (a) Prove that every finitely generated subgroup of $(Q,+)$ is cyclic. (b) Prove that Q and Q×Q are not isomorphic as groups.(CO2)	10			
5-b.	Prove Lagrange's theorem. (CO2)	10			
6. Answer any <u>one</u> of the following:-					
6-a.	Describe properties of lattices. (CO3)	10			
6-b.	Describe distributive lattice in detail with an example. (CO3)	10			
7. Answe	er any <u>one</u> of the following:-				
7-a.	Draw the truth tables of AND, OR, NOT, NAND, NOR, XOR, XNOR gates. Mention which of them are universal gates. (CO4)	10			
7-b.	Explain Tautology and Contradiction with definition and examples. (CO4)	10			
8. Answer any <u>one</u> of the following:-					
8-a.	Differentiate between Euler and Hamiltonian paths. Explain with the help of diagrams. (CO5)	10			

•

•

8-b. Find a unique tree when these two traversals are given. Using the INORDER: H K 10 D B I L E A F C M J G
PREORDER: A B D H K E I L C F G J M. (CO5)

cor. sur and

•